
DEGAMING
BANKROLL CONTRACTS

S M A R T C O N T R A C T
S E C U R I T Y A U D I T O F

MIDGAR

Project Summary 3

Project Overview 4

Scope 5

Vulnerability Summary 6

Findings & Resolutions 7

Appendix 29

Vulnerability Classification 30

Methodology 30

Disclaimer 31

About Midgar 32

TABLE OF CONTENTS

2MIDGAR

Security Firm: Midgar

Prepared By: VanGrim, EVDoc

Client Firm: First Block AB

Final Report Date: 16th April 2024

Project Summary

DeGaming engaged Midgar (former Zanarkand) to review the security of its smart contracts related to

the DeGaming platform. From the 25th of Match to the 3rd of April, a team of two (2) auditors reviewed

the source code in scope. All findings have been recorded in the following report.

Please refer to the complete audit report below for a detailed understanding of risk severity, source

code vulnerability, and potential attack vectors.

3

Project Name DeGaming

Language Solidity

Codebase https://github.com/degamingio/bankroll-contracts

Commit
Initial: f935e5e42f9b84a00a35d8171634f475b988fec5
Final: 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Audit Methodology Static Analysis, Manual Review, Fuzz Testing

Review Period 25 March - 3 April 2024

Resolved 16th April 2024

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src

Project Overview

4

DeGaming introduces a pioneering decentralized gaming platform designed to transform the iGaming

industry by merging the realms of licensed Web2 and unlicensed Web3 operators. This innovative

platform aims to address major industry challenges, including slow innovation, questionable game

fairness, high transaction costs, and centralized control, which have historically impeded the sector's

growth.

Through a unique blend of blockchain technology and smart contracts, DeGaming promises to

enhance transparency, fairness, and efficiency across the iGaming landscape. It offers game

developers, casino operators, and investors a collaborative ecosystem where innovation is rewarded,

transactions are streamlined, and game integrity is assured. By simplifying access to a wide array of

games and enabling secure, low-cost payments, DeGaming sets a new standard for fairness and player

trust in iGaming, positioning itself as a future leader in the digital gaming revolution.

MIDGAR

ID File SHA-1 Checksum

BKR Bankroll.sol
292f81d8e1014e5c1e70286
4bf89188ac0538b03

DBF DGBankrollFactory.sol
2540910ce9fed9f3f421c61
9b0c627637903b84f

DBM DGBankrollManager.sol
562d3f3cda2d850a9cf2ca0
d04bd55598c3e419d

DGE DGEscrow.sol
f259ab067a0010e1e5a1a65
b84e5be069f826a28

GLOBAL - -

Audit Scope

5MIDGAR

Vulnerability
Level

Total Acknowledged Resolved

🔴 Critical 2 2 2

🟠 High 6 6 6

🟡 Medium 6 6 4

🟢 Low 3 3 3

🔵 Informational 3 3 1

Vulnerability Summary*

6MIDGAR

*Considering the large number of critical/high vulnerabilities found during this time-boxed security review,
Midgar recommends additional security testing on the codebase prior to any deployment.

Findings & Resolutions

ID Title Severity Status

BKR-1 Bankroll is vulnerable to inflation attack 🔴 Critical Resolved

BKR-2 Potential DoS in `depositFunds()` 🔴 Critical Resolved

BKR-3
A player can always avoid sending
funds to the Escrow

🟠 High Resolved

BKR-4 Lack of a way to preview mint for LPs 🟠 High Resolved

BKR-5
Lack of a way to preview redeem for
LPs

🟠 High Resolved

BKR-6
Low `withdrawalDelay` and
`withdrawalEventPeriod` enable front-
running of `debit()`

🟠 High Resolved

DBM-1 LP fees are sandiwchable 🟠 High Resolved

DGE-1
The `revertFunds()` function will revert
when using USDT

🟠 High Resolved

DGE-2 Risk of ID collision 🟡 Medium Resolved

BKR-7 Missing `gap` for contract upgrades 🟡 Medium
Acknowledged
& closed

BKR-8
`ReentrancyUpgradeble` is not
initialised

🟡 Medium Resolved

7MIDGAR

Findings & Resolutions

ID Title Severity Status

BKR-9
Player loses part of their debit when the
`_amount` is greater than `maxRisk`

🟡 Medium
Acknowledged
& closed

BKR-10
Missing validation checks could DoS
withdrawals

🟡 Medium Resolved

DGF-1
Incorrect branch of OZ library used in
upgradeable contract

🟡 Medium Resolved

BKR-11
Calling `debit()` on a bankroll with a `maxRisk`
of 0 has no effect

🟢 Low Resolved

DBM-2
Excessively low `ggrOf` values will not
generate any fees

🟢 Low Resolved

DGE-3
Players have no way of knowing the
`eventPeriod` in `DGEscrow`

🟢 Low Resolved

BKR-12
Not possible to debit Account Abstraction
wallets

🔵 Informational Resolved

GLOBAL-1 Contract size check vulnerability 🔵 Informational
Acknowledged
& closed

GLOBAL-2 Following the ERC-4626 standard 🔵 Informational
Acknowledged
& closed

8MIDGAR

BKR-1 Bankroll is vulnerable to inflation attack

Asset Bankroll.sol: L221

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: Critical Impact: High Likelihood: High

9

Description (POC)
The amount of shares issued is recorded in the vault contract, but the assets it holds are not. These
are recorded as the balance of the vault contract in the asset contract. This balance can be altered
by anyone who transfers additional tokens to the vault's address, an action known as a donation.
When the vault unexpectedly receives a donation, the value of each existing share increases.

Consider the following scenario:
* Attacker back-runs creation of a bankroll and deposits 1 wei , he gets back 1 share
* Attacker front-runs victim's deposit and transfers 200 USDC to contract
* Victim deposits 200 USDC and gets 0 shares (`1 * 200e6 / (200e6 + 1) == 0 `)
* Attacker burns their share and gets all the money

Recommendation
Mint dead shares in the constructor or “steal” a minimum amount of the first deposit and send the
LP tokens to a dead address, as Uniswap V2 does.

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src
https://github.com/degamingio/bankroll-contracts/blob/POC/test/POC/BKL_inflationAttack.t.sol
https://github.com/Uniswap/v2-core/blob/ee547b17853e71ed4e0101ccfd52e70d5acded58/contracts/UniswapV2Pair.sol#L121

BKR-2 Potential DoS in `depositFunds()`

Asset Bankroll.sol: L221

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: Critical Impact: High Likelihood: High

10

Description (POC)
The `depositFunds()` function is vulnerable to DoS under specific conditions, hindering LPs from
depositing funds and minting shares. This situation may arise when the `totalSupply` is equal to or
greater than 1 and a call to the `debit()` function results in zero liquidity.
Consequently, an error occurs due to division by zero.

Recommendation
Consider not deploying a bankroll with `maxRisk` set to 100%.
Consider prohibiting minting if `liquidity` is equal to zero and `totalSupply` is greater than 0 by
adding a check in the `depositFunds()` function.

Or set the exchange rate to one in this case

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src
https://github.com/degamingio/bankroll-contracts/blob/POC/test/POC/BKL_depositFundsDos.t.sol

BKR-3 A player can always avoid sending funds to the Escrow

Asset Bankroll.sol: L221

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: High Impact: Medium Likelihood: High

11

Description (POC)
The purpose of the DGEscrow is to add a security measure in case of suspicious activities such as
fraud, so that any amount sent from the contract will first be sent to the escrow if it exceeds the
escrow threshold.

However, due to the escrow threshold being based on the token balance of the contract - a player
will always be able circumvent sending the funds to the escrow by increasing the token balance of
the contract.

Recommendation
Consider changing the mechanism for sending funds to the escrow to not rely on the liquidity in the
contract. For example, having an absolute value instead.

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src
https://github.com/degamingio/bankroll-contracts/blob/POC/test/POC/circumvent_escrow.t.sol

BKR-4 Lack of a way to preview mint for LPs

Asset Bankroll.sol

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: High Impact: Medium Likelihood: High

12

Description (POC)
 LPs have no way to preview the minted amount before calling the `depositFunds()` function. They
can only determine how many shares correspond to the deposited token amount after calling
`depositFunds()`.

If the `shares` are worthless, the LP won't be able to foresee it. Consequently, they will lose their
entire deposit.

Recommendation
Consider implementing a public view function, `previewMint()`, that takes in an amount of tokens as
argument.

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src
https://github.com/degamingio/bankroll-contracts/blob/POC/test/POC/BKL_previewMint.t.sol

BKR-5 Lack of a way to preview redeem for LPs

Asset Bankroll.sol

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: High Impact: Medium Likelihood: High

13

Description (POC)
If the value of the `shares` drops to 0 and an LP decides to withdraw, they will not receive any
tokens in return, with no prior means of knowing this.
An LP holding `shares` has no incentive to withdraw when the `shares` have no value. Their interest
lies in holding the `shares` until their value is at least greater than zero.

Consider the following scenario:
* Bob deposits 100 USDC to Bankroll and gets back 100e6 shares
* Admin debit to Alice 100 USDC
* Bob withdraws 100e6 shares
* However, Bob gets back 0 USDC because liquidity = 0

Recommendation
Implement a public view function, `previewRedeem()`, which accepts an amount of `shares` as an
argument

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src
https://github.com/degamingio/bankroll-contracts/blob/POC/test/POC/BKL_sharesHasNoValue.t.sol

BKR-6 Low `withdrawalDelay` and `withdrawalEventPeriod` enable front-
running of `debit()`

Asset Bankroll.sol: L51 L54

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: High Impact: High Likelihood: High

14

Description
When the `debit()` function is called, `shares` lose value. An LP would have an incentive to withdraw
before the `debit()` function is executed. Some parameters such as `withdrawalDelay` and
`withdrawalEventPeriod` aim to mitigate this issue. However, there are no minimum requirements
imposed for these values.

An LP could quite easily execute their call to the `withdrawStageOne()` function in one block and
their call to the `withdrawStageTwo()` function in the next block, just before the `debit()` transaction

Recommendation
Consider setting a minimum value for `withdrawalDelay` and `withdrawalEventPeriod`

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src

DBM-1 LP fees are sandiwchable

Asset DGBankrollManager.sol: L292

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: High Impact: Medium Likelihood: High

15

Description (POC)
Stepwise jump in the value of the vault may allow an attacker to front-run `claimProfit()` to call
`depositFunds()` and earn fees. The malicious actor can then claim these rewards in a relatively
short period depending on `withdrawalWindowLength` and `withdrawalDelay`.
As a result, the attacker will receive equivalent rewards to those of an LP that deposited much
earlier.

Recommendation
Consider implementing a “warmup period” where liquidity providers cannot accrue rewards or a
depositFunds fee.

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src
https://github.com/degamingio/bankroll-contracts/blob/POC/test/POC/BKM_frontrunClaim.t.sol

DGE-1 The `revertFunds()` function will revert when using USDT

Asset DGEscrow.sol: L169

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: High Impact: High Likelihood: Medium

16

Description (POC)
In the `revertFunds()` function, the admin can revert funds to the bankroll in case of fraud. However,
the following line will revert in case the token is USDT and the allowance is set for a non-zero value:

Recommendation
Use `token.forceApprove()` instead of `token.approve()`. Consider also adding an else-statement so
that a malicious player cannot wait for the event period to end and then call the
`claimUnaddressed` function.

NOTE: See the `approve()` function in the USDT contract.

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src
https://github.com/degamingio/bankroll-contracts/blob/POC/test/POC/revertFunds_fail_USDT.t.sol
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code

DGE-2 Risk of ID collision

Asset DGEscrow.sol: L93-102

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: Medium Impact: High Likelihood: Low

17

Description (POC)
When `debit()` is called within the same block with the same player and operator, the escrow entry
remains unchanged, resulting in identical IDs for two different calls.

Recommendation
Add a `nonce` to make sure that each `id` is unique.

 As a result, `escrowed[id]` will be overwritten by the second `winnings`, thereby preventing the
player from receiving the initial amount upon calling `releaseFunds()`.

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src
https://github.com/degamingio/bankroll-contracts/blob/POC/test/POC/ESC_idCollission.t.sol

BKR-7 Missing `gap` for contract upgrades

Asset Bankroll.sol

Status Acknowledged & closed

Resolution
Acknowledged and closed

Rating Severity: Medium Impact: High Likelihood: Low

18

Description
The Bankroll.sol contract is currently missing a gap variable. Thus, during upgrades - this contract,
risk having variables of their child contracts being overwritten.

Recommendation
Add a `_gap` variable to the contract.

MIDGAR

BKR-8 `ReentrancyGuardUpgradeble` is not initialised

Asset Bankroll.sol

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: Medium Impact: High Likelihood: Low

19

Description
The ReentrancyGuardUpgradeble contract is never initialised in the Bankroll.sol contract. This
means that the `nonReentrant` modifiers will not be initialised and thus not work.

Recommendation
Add the `__ReentrancyGuard.init()` to the `initialize()` function.

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src

BKR-9 Player loses part of their debit when the `_amount` is greater than
`maxRisk`

Asset Bankroll.sol: L315

Status Acknowledged & closed

Resolution
Acknowledged and closed.

Rating Severity: Medium Impact: Medium Likelihood: Medium

20

Description
When `debit()` is called, if the amount exceeds the maximum risk, the player will receive what
remains in the bankroll balance, but the excess amount will be lost to them.
This encourages players to interact only with bankrolls with a high balance, thereby reducing the
chances for those with a low balance to replenish their funds

Recommendation
If this behavior is unexpected, consider adding a mapping to keep track of the remaining prize
amount that has not yet been sent to the player.

Add the remaining amount to the mapping in `debit()`:

The admin can later call `debit()` to send the remaining amount to the player

MIDGAR

BKR-10 Missing validation checks could DoS withdrawals

Asset Bankroll.sol: L315

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: Medium Impact: Medium Likelihood: Medium

20

Description
There are currently three time checks in place for withdrawals: `withdrawalDelay`,
`withdrawalWindowLength`, `withdrawalEventPeriod`. The admin is the only role that can set them,
however there are checks missing to make sure that the times are in certain time ranges relative to
each other. For example, if `withdrawalDelay` is greater than `withdrawalWindowLength` then the LP
wouldn't be able to withdraw their funds in the function `withdrawalStageTwo()`.
Furthermore, if `withdrawalWindowLength` is set to 0, `withdrawalStageTwo()` will revert every time
due to the following check:

MIDGAR

Recommendation
Add the following checks `setWithdrawalDelay()`

`setWithdrawalWindow()`

`setWithdrawalEventPeriod()`

If withdrawals are not supposed to be restricted by setting `withdrawalWindowLength` to zero,
prevent setting excessively low values for `withdrawalWindowLength` in `setWithdrawalWindow()`
Otherwise consider reverting `withdrawlStageOne()` if `withdrawalWindowLength` is set to zero:

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src

DGF-1 Incorrect branch of OZ library used in upgradeable contract

Asset DGBankrollFactory.sol: L5

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: Medium Impact: High Likelihood: Low

21

Description
DGBankrollFactory.soll uses Clones OZ library.
From the README file of the upgrades safe library:
“you must use this package and not @openzeppelin/contracts if you are writing upgradeable
contracts.”

Using the upgrades safe library, in this case, will ensure the inheritance from Initializable and the
other contracts is always linearized as expected by the compiler

Recommendation
 Use ClonesUpgradeable library instead.

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/tree/v2.5.0#extending-contracts

BKR-11 Calling `debit()` on a bankroll with a `maxRisk` of 0 has no effect

Asset Bankroll.sol: L312

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: Low Impact: Low Likelihood: Low

23

Description
If a bankroll has a `maxRisk` set to zero and the `debit()` function is called, the `_amount` will be
adjusted to 0. In this scenario, 0 tokens will be sent to the player, and the `GGR` will remain
unchanged as it is reduced by zero. The same applies to the `ggrOf[_operator]`.

Recommendation
Consider reverting if `maxRisk` is 0.

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src

DBM-2 Excessively low `ggrOf` values will not generate any fees

Asset DGBankrollManager.sol

Status Resolved

Resolution
This issue is resolved as of commit 16d90e33f41d61d0aaf4cd788a59a216ec4ab778

Rating Severity: Low Impact: Medium Likelihood: Low

24

Description
In the `claimProfit()` function, the transaction will revert if the `GGR` is less than 1.

Recommendation
Consider reverting if the `GGR` is below 10.

Consider calculating the amount to transfer from the bankroll after the for loop

However, if the fee is less than 10% and there is only one operator, there will be nothing to claim if
the `GGR` is below 10 wei. Moreover, if there are multiple operators, each with a `ggrOf` less than 10
wei, the fees will be rounded down to 0 in the for loop each time. The total `ggrOf` will then be
accounted for in the `amount` variable.

MIDGAR

https://github.com/degamingio/bankroll-contracts/commit/16d90e33f41d61d0aaf4cd788a59a216ec4ab778

DGE-3 Players have no way of knowing the `eventPeriod` in `DGEscrow`

Asset DGEscrow.sol:L32

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: Low Impact: Low Likelihood: Low

25

Description
The visibility of `eventPeriod` is not specified. The default visibility level for state variables is
internal. Since there is no getter function for this variable, players do not have access to it and
cannot know when they have the opportunity to call the `claimUnaddressed()` function.

Recommendation
Consider setting the visibility of `eventPeriod` state variable to public or creating a
`getEventPeriod()` view function

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src

BKR-12 Not possible to debit Account Abstraction wallets

Asset Bankroll.sol: L308

Status Resolved

Resolution
This issue is resolved as of commit 3b4733e68d83584b93b49b73757e6bf4da0d2d2a

Rating Severity: Informational

26

Description
Due to the below check it is currently not possible for smart contract wallets to be implemented
under the ERC4337 standard. since those wallets have a code size.

Recommendation
Consider if the debit should strictly cater towards EOA

MIDGAR

https://github.com/degamingio/bankroll-contracts/tree/3b4733e68d83584b93b49b73757e6bf4da0d2d2a/src
https://www.erc4337.io/docs

GLOBAL-1 Contract size check vulnerability

Asset -

Status Acknowledged & closed

Resolution
Acknowledged and closed.

Rating Severity: Informational

27

Description
Checking code size on an address proves valuable when aiming to protect users, such as preventing
them from sending tokens to contracts that might result in those assets being locked forever.
However, when functions require the caller to be an EOA for security purposes, relying solely on
this method is ill-advised.

During contract’s `constructor` execution, `extcodesize` of the smart contract being deployed will
return zero. No code exists at the contract address until the contract creation process concludes.
Hence, as there is no code stored at contract addresses until `constructor` execution ends, any
function called from a smart contract’s `constructor` will bypass the target contract’s `extcodesize`
check.

If the objective is to restrict calls from other contracts, `(tx.origin == msg.sender)` could be utilized,
but it also comes with its own limitations and potential vulnerabilities.
Fishing attacks will not be a risk if `tx.origin` is used solely to ensure that the `msg.sender` is not a
contract

Recommendation
Do not rely on the `_isContract()` function in future upgrades if the goal is to prevent contracts from
accessing a function.

MIDGAR

GLOBAL-2 Following the ERC-4626 standard

Asset -

Status Acknowledged & closed

Resolution
Acknowledged and closed.

Rating Severity: Informational

28

Description
The bankroll contracts utilize functionalities closely related to the workings of a vault such as
depositing funds in exchange for shares. However, the contracts reviewed during this engagement
have also shown that the vault is missing a few functionalities that might be beneficial to vaults.

For example, there currently is no way for a player to preview their share amount or their deposit
amount. In addition, since the shares are currently represented as a mapping in the contracts,
there’s no way for the user to transfer shares.

For tokenized vaults, the current gold standard is ERC-4626 that enables the above functionalities
among other benefits. Inheriting would potentially unlock new benefits in addition to lower the
complexity of the current contracts.

Recommendation
Consider implementing the ERC-4626 standard.

MIDGAR

https://ethereum.org/en/developers/docs/standards/tokens/erc-4626/

Appendix

29MIDGAR

Methodology

High Impact Medium High Critical

Medium Impact Low Medium High

Low Impact Low Low Medium

Low Likelihood Medium Likelihood High Likelihood

Vulnerability Classification
The risk matrix below has been used for rating the vulnerabilities in this report. The full details of the

interpretation of the below can be seen here.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry

standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by aspiring auditors.

30MIDGAR

https://nimble-fluorine-272.notion.site/Audit-Pricing-8c08243da21c4a1584b65e74fa8d6080?pvs=4

Disclaimer
This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or
value of any “product” or “asset” created by any team or project that contracts Midgar to
perform a security assessment. This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do they provide any indication of
the technologies proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement
with any particular project. This report in no way provides investment advice, nor should be
leveraged as investment advice of any sort. This report represents an extensive assessing process
intending to help our customers increase the quality of their code while reducing the high level of
risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Midgar’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Midgar’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Midgar are subject to dependencies and are under
continuing development. You agree that your access and/or use, including but not limited to any
services, reports, and materials, will be at your sole risk on an as-is, where-is, and as-available
basis. Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. The assessment reports could include false positives, false
negatives, and other unpredictable results. The services may access and depend upon multiple
layers of third parties.

Notice that smart contracts deployed on the blockchain are not resistant to internal/external
exploits. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Midgar does not guarantee the explicit security
of the audited smart contract, regardless of the verdict.

31MIDGAR

About Midgar
Midgar is a team of security reviewers passionate about delivering comprehensive web3 security

reviews and audits. In the intricate landscape of web3, maintaining robust security is paramount to

ensure platform reliability and user trust. Our meticulous approach identifies and mitigates

vulnerabilities, safeguarding your digital assets and operations. With an ever-evolving digital space,

continuous security oversight becomes not just a recommendation but a necessity. By choosing Midgar,

clients align themselves with a commitment to enduring excellence and proactive protection in the

web3 domain.

To book a security review, message https://t.me/vangrim1.

MIDGAR 32

https://t.me/vangrim1

M I D G A R

